کاشت میلگرد در رشت

کاشت میلگرد ، ترمیم و آببندی بتن

کاشت میلگرد در رشت

کاشت میلگرد ، ترمیم و آببندی بتن

۸۴ مطلب در بهمن ۱۳۹۶ ثبت شده است

  • ۰
  • ۰

ترمیم بتن کرمو در گیلان

مهندس فلاح چای

09120215547

  • شهاب فلاح
  • ۰
  • ۰

ترمیم بتن کرمو تی وستون و دیوار برشی در مازندران

مهندس فلاح چای

09120215547

  • شهاب فلاح
  • ۰
  • ۰

ترمیم بتن کرمو در رشت

مهندس فلاح چای

09120215547


برای اضافه کردن یک کلمه، آن را وارد کنید و enter را فشار دهید.
این کلمات به صورت پیش‌فرض زیر مطلب نمایش داده خواهند شد.
  • کاشت میلگرد و ترمیم سازه بتنی در مازندرانx
  • ترمیم بتن کرمو در رشتx
  • ترمیم بتن کرموx
  • شهاب فلاح
  • ۰
  • ۰

ترمیم بتن کرمو در رامسر مازندران

مهندس فلاح چای


09120215547


این کلمات به صورت پیش‌فرض زیر مطلب نمایش داده خواهند شد.

  • کاشت بولت در تنکابنx
  • کاشت میلگرد در رشتx
  • کاشت میلگرد در مازندرانx
  • کاشت میلگرد در نماx
  • کاشت میلگرد در چالوسx
  • کاشت میلگرد و ترمیم سازه بتنی در مازندران


ین کلمات به صورت پیش‌فرض زیر مطلب نمایش داده خواهند شد.

  • کاشت میلگرد و ترمیم سازه بتنی در مازندرانx
  • ترمیم بتن کرمو در رامسر مازندرانx
  • ترمیم بتن کرمو
  • شهاب فلاح
  • ۰
  • ۰

کاشت میلگرد در نکا مازندران

مهندس فلاح چای

09120215547

  • شهاب فلاح
  • ۰
  • ۰

کاشت میلگرد در سلمانشهر مازندران

مهندس فلاح چای

09120215547

  • شهاب فلاح
  • ۰
  • ۰

کاشت میلگرد در بهشهر مازندران

مهندس فلاح چای


09120215547

  • شهاب فلاح
  • ۰
  • ۰


کاشت تخصصی میلگرد در نوشهر

09120215547


  • شهاب فلاح
  • ۰
  • ۰

اتصالات تیر به ستون در قاب‌های خمشی

اتصالات خمشی تیر به ستون مختلفی مورد استفاده قرار می‌گیرد. چون عمده لنگر خمشی تیر در بال‌های آن توسعه می‌یابد، بنابراین برای فراهم نمودن یک اتصال خمشی، باید به نحو مقتضی بال‌های تیر به ستون متصل شوند. اتصال بال‌های تیر به ستون از طرق مختلف نظیر اتصال مستقیم و با استفاده از جوش نفوذی و یا پیچ، به صورت غیرمستقیم و توسط ورق‌های روسری و زیرسری و یا توسط ورق فوقانی و نشیمن انجام گیرد.

اتصال مستقیم بال‌های تیر به ستون به دلیل نیاز به پخ‌زنی (کونیک نمودن) بال برای جوش شیاری چندان متداول نیست و استفاده از ورق‌های انتهایی، ورق‌های فوقانی و تحتانی و یا نبشی نشیمن متداولتر است. اجرای اتصال خمشی تیر به جان ستون مشکلتر از ایجاد اتصال به بال ستون است. بنابراین برای اجرای مناسب اتصال تیر به جان ستون می‌توان از یک نیمرخ سپری با طول حدود ۲ برابر ارتفاع تیر که بال‌ها و جان آن‌ که برای قرار گرفتن مناسب در فاصله بالها و جان ستون بریده شده است، استفاده نمود.

جان ستون توسط جوش گوشه و به بال ستون توسط جوش شیاری انجام می‌گیرد. راهکار دیگر اتصال تیر به جان ستون، استفاده از ورق‌های فوقانی و نشیمن تقویت شده است، که در این اتصال جان ستون به شدت در معرض تنش‌های خمش و موضعی قرار می‌گیرد. بنابراین استفاده از مقطع سپری مناسب‌تر است.

اتصالات تیر به ستون باید بگونه‌ای طراحی شوند که شرایط ایجاد مفصل پلاستیک در داخل تیر و خارج ازاجزای اتصال را فراهم نمایند. در اتصالات جوشی تیر به ستون، اتصال بال تیر یا ورق پوششی آن به وجه ستون یا به ورق پیشانی (فلنج) که به ستون پیچ می‌شود باید منحصراً از نوع نفوذی کامل باشد. برای اتصال جان تیر یا ورق اتصال جان، به بال ستون یا ورق انتهایی، استفاده از جوش نفوذی نسبی یا جوش گوشه مجاز است. رفتار اتصالات تیر به ستون در قاب‌های خمشی به عنوان اعضای کنترل شونده توسط نیرو در نظر گرفته می‌شوند.

طراحی اتصالات تیر به ستون

انواع اتصالات تیر به ستون‌

انواع اتصالات تیر به ستون‌ها به صورت ذیل طبقه می‌شوند.

  1. ‌اتصالات ساده تیر به ستون
  2. ‌اتصالات خمشی کاملاً گیردار تیر به ستون
  3. ‌اتصالات خمشی نیمه گیردار تیر به ستون

معیار طبقه‌بندی میزان گیرداری اتصالات بر اساس میزان نسبت لنگر خمشی، تغییر شکل‌ها و دوران‌های ارتجاعی و غیرارتجاعی اتصالات در قاب‌های خمشی ویژه و متوسط و نیز مقاومت و شکلپذیری اتصال بر اساس محدوده عملکرد ارتجاعی و غیرارتجاعی آنها طبق پارامترهای ذیل طبقه بندی می‌شود.

  1. ‌میزان انتقال لنگر
  2. ‌سختی اتصالات
  3. شکلپذیری اتصالات

انواع اتصالات خمشی گیردار از پیش تایید شده تیر به ستون

صورتی که اتصالات معرفی شده در این بخش، ضوابط و محدودیت‌های بیان شده را تامین نمایند، به عنوان اتصالات خمشی گیردار از پیش تایید شده تیر به ستون و در قاب‌های خمشی ویژه (SMF) و متوسط (IMF) قابل استفاده خواهند بود.

  1. اتصال پیچی با ورق‌های روسری و زیرسری (BFP)
  2. اتصال مستقیم تیر با مقطع کاهش یافته (RBS)
  3. اتصال از طریق ورق انتهایی با سخت کننده ‌با ورق لچکی (BSEEP) و بدون سخت کننده (بدون ورق لچکی ) (BUEEP) اتصالات فلنجی تیر به ستون‌
  4. اتصال مستقیم تقویت نشده جوشی (WUF-W)
  5. اتصال جوشی با ورق‌های روسری و زیرسری (WFP)
  6. اتصال تیر به ستون با اتصال لچکی پیچ شده‌ (KBB)
  7. اتصال تیر به ستون از نوع ConXL

رعایت ضوابط و محدودیت‌های بیان شده برای اتصالات معرفی شده باعث تامین گیرداری (FR) می‌شود.

ویژگی‌ها و مشخصات اتصالات خمشی گیردار از پیش تایید شده

هنگامی که مقادیر مقاومت‌های موجود بر اساس ضوابط آیین‌نام‌های مشخص می‌شود، لازم است برای در نظر گرفتن اثرات ناشی از عوامل مختلف نظیر کیفیت مصالح و ساخت، تجهیزات کارگاهی و رفتار مورد انتظار اتصالات پیش تایید شده و در جهت محافظه کارانه و تامین قابلیت اعتماد لازم در این اتصالات از ضرایب کاهش مقاومت استفاده شود. بنابراین برای حالات حدی شکلپذیر از ضریب مقاومت φd=۱ و برای حالات حدی غیرشکلپذیر از ضریب مقاومت φn=۰/۹ در محاسبه ظرفیت و مقاومت اعضای مختلف اتصالات تیر به ستون استفاده شده است.

ناحیه حفاظت شده

مطابق تعریف و ضوابط مبحث دهم مقررات ملی ساختمان، ناحیه حفاظت شده در یک عضو از سازه ناحیه‌ای شکلپذیر از عضو است که انتظار می‌رود در آن مفصل پلاستیک تشکیل شود. به دلیل اهمیت این ناحیه و رفتار حساس آن در حرکات رفت و برگشتی سازه، این ناحیه باید عاری از هر گونه عملیاتی که موجب دگرگونی عملکرد عضو در این ناحیه می‌شود، باشد. ناحیه حفاظت شده در دو انتهای تیر، فاصله بین بر ستون تا نصف عمق تیر از محل تشکیل مفصل پلاستیک به سمت داخل دهانه در نظر گرفته می‌شود. این ناحیه بجز در مواردی که مشخص شده است باید کلیه الزامات لرزه‌ای مربوط به اتصالات و مقاطع را تامین نماید.

در اتصالات گیردار خمشی تیر به ستون از پیش تایید شده، ناحیه حفاظت شده برای هر نوع از این اتصالات به طور جداگانه قابل تعریف است. نظر به اهمیت ناحیه‌ی حفاظت شده‌ی اعضا در تامین شکلپذیری مورد نیاز، الزامات عمومی که باید در اجزای ناحیه حفاظت شده در نظر گرفته شود به شرح ذیل است.

  1. بکار بردن وصله مستقیم یا غیرمستقیم جوشی یا پیچی نیمرخ‌ها یا ورق‌های تشکیل دهنده‌ی عضو در ناحیه حفاظت شده ممنوع است.
  2. هر گونه ناپیوستگی ناشی از عملیات ساخت و نصب مانند جوش‌های موضعی، وسایل کمکی برای نصب،ناصافی‌های ناشی از برش‌های حرارتی در ناحیه حفاظت شده ممنوع بوده و در صورت وجود باید به نحو مناسبی برطرف شده و تعمیر شود.
  3. خال جوش کردن ورق‌های ذوزنقه‌ای تیرهای مختلط و نیز جوش برشگیرهای از نوع گل میخ در تیرهای مختلط در ناحیه حفاظت شده، در صورت تامین ضوابط (‌اتصالات از پیش تایید شده) مجاز است.

ورق‌های پرکننده انگشتی

این ورق‌ها به منظور همراستا نمودن (هم محور نمودن) و سهولت در اجرای اجزای سازه‌ای اتصالات بکار برده ‌می‌شوند. ضوابط مربوط به کاربرد این ورق‌ها در اتصالات جوشی و پیچی در مبحث ۱۰ ملی ساختمان ارائه شده است. در صورت کاربرد مناسب ورق‌های پرکننده انگشتی تاثیر سازه‌ای بر روی پیش تنیدگی و آزادشدگی پیچ‌ها و عملکرد اتصالات ندارند. در صورت کاربرد کامل این ورق‌های پرکننده، تکیه‌گاهی به اندازه ۷۵٪ قطر پیچ در مقایسه با سطح کاهش یافته‌ی دارای پیچ در وسط آن و در امتداد طولی سوراخ لوبیایی تامین می‌شود. به عبارت دیگر نقش ورق‌های پرکننده انگشتی در هر دو طرف عضو و احاطه آنها توسط مصالح اجزای اتصالات به عنوان رابط بین سوراخ‌های انگشتانه هستند.

کاربرد این ورق‌ها در هر دو نوع از اتصالات گیردار از پیش تایید شده فلنجی (BSEEP & BUEEP) و اتصال گیردار پیچی به کمک ورق‌های روسری و زیرسری (BFP) مجاز است.

اتصال گیردار پیچی تیر به ستون از طریق ورق روسری و زیرسری (BFP)

اتصالات خمشی گیردار تیر به ستون با ورق فوقانی و تحتانی پیچ شده به بال تیر از طریق اتصال جوشی بین ورق‌های پوششی یا ورق‌های فوقانی و تحتانی به ستون و نیز اتصال پیچی بین بال تیر و ورق‌های فوقانی و تحتانی برقرار می‌شود و کلیه اتصالات از نوع اصطکاکی هستند. برای این نوع اتصال ورق‌های فوقانی و تحتانی باید یکسان باشند، اتصال بین ورق‌های فوقانی و تحتانی به بال ستون از طریق جوش‌های شیاری با نفوذ کامل CJP و اتصال این ورق‌ها به بال تیرها از طریق پیچ‌های پر مقاومت ایجاد شده باشد. اتصال جان تیر به بال ستون از طریق یک ورق به صورت نوار برشی و با جوش و پیچ برقرار می‌شود.

شروع تسلیم و تشکیل مفصل پلاستیک در تیر و در ناحیه مجاور انتهای ورق‌های فوقانی و تحتانی یا ورق‌های پوششی رخ می‌دهد. با رعایت محدودیت‌های ضوابط لرزه‌ای، این نوع اتصالات شرایط لازم را برای استفاده در قاب‌های خمشی ویژه و متوسط را دارا هستند.

بایستی توجه نمود که کاربرد این اتصالات در قاب‌های خمشی ویژه با دال بتنی سازه‌ای در صورتی امکان پذیر است که امکان تغییر شکل و دوران در اتصالات تیر به ستون از طریق ایجاد فاصله بین دال بتنی و ستون، به اندازه حداقل ۲۵ میلیمتر از دو طرف بال ستون و از مصالح شکلپذیر در فضای بین بال ستون‌ها و بتن سازه‌ای دال مجاز باشد‌.

ضوابط و محدودیت‌های اتصال BFP

در این نوع اتصال، طبق ضوابط برای تیرها، استفاده از مقاطع نورد شده IPE یا مقاطع ساخته شده با ورق‌های فولادی برای مقاطع I شکل مجاز است. در ستون‌ها نیز با رعایت ضوابط مبحث دهم مقررات ملی ساختمان می‌توان از نیمرخ نورد شده یا مقاطع ساخته شده نیز استفاده نمود.

  • اتصال تیر به بال ستون بواسطه ورق‌های فوقانی و تحتانی یا ورق‌های پوششی باید از طریق جوش‌های شیاری با نفوذ کامل برقرار شود.
  • حداکثر ارتفاع تیرها برای مقاطع نورد شده ۱۰۰ سانتیمتر و برای مقاطع ساخته شده از ورق به ارتفاع مقطع نوردشده معادل محدود شده است. حداکثر ارتفاع مقطع نورد شده ستون‌ها هنگامی که از دال سازه‌ای بتنی استفاده میش‌ود به مقدار ۱۰۰ سانتیمتر محدود شده است. در صورت عدم استفاده از دال سازه‌ای بتنی حداکثر ارتفاع به مقدار ۴۰ سانتیمتر محدود شود. ستون‌ها با مقطع صلیبی نباید عرض یا عمق بیشتر از مقادیر مجاز مقاطع نورد شده را داشته باشند. مقاطع ستون‌های جعبه‌ای بال پهن در صورت مشارکت در عملکرد لرزه‌ای قاب‌های خمشی در دو راستای متعامد نباید عرض یا عمق بیشتر از ۷۰ سانتیمتر را داشته باشند.
  • به منظور تامین شکلپذیری کافی در قاب‌های خمشی ویژه SMF حداکثر وزن واحد طول تیرها به مقدار ۲۵۰ کیلوگرم بر متر محدود شده است ولی هیچ گونه محدودیتی برای وزن واحد طول ستون‌ها وجود ندارد.
  • به منظور تامین شکلپذیری کافی در قاب‌های خمشی ویژه SMF حداکثر ضخامت بال تیر به مقدار ۳۰ میلیمتر محدود شده است.
  • به منظور تامین تقاضای دوران اتصالات در محدوده غیرخطی برای قاب‌های خمشی ویژه SMF حداقل نسبت فاصله خال صدهانه به عمق تیر در قاب‌های خمشی ویژه برابر ۹ و در قاب‌های خمشی متوسط به مقدار ۷ محدود شده است.
  • نسبت عرض به ضخامت در بال‌ها و جان تیرها و ستون‌ها بایستی مطابق الزامات ضوابط لرزه‌ای مبحث دهم مقررات ملی ساختمان باشد.

جزئیات اتصالات

مشخصات مصالح ورق‌ها

کلیه ورق‌های اتصالات باید مطابق یکی از مشخصات استانداردهای مرسوم و معتبر موجود باشند.

جوش ورق بال تیر

ورق‌های فوقانی و تحتانی بال تیرها باید از طریق جوش شیاری با نفوذ کامل CJP و با در نظر گرفتن نیروهای لرزه‌ای مورد نیاز بحرانی به بال ستون متصل شوند. جوش‌های نفوذی فوقانی و تحتانی ورق نباید به یکدیگر متصل شوند. همچنین اگر در اتصال تیر به ستون از ورق پشت بند برای جوشکاری استفاده شود آنگاه باید بعد از جوشکاری این ورق برداشته شود. به منظور دسترسی به جوش بی عیب و بعد جوش مناسب ناحیه زیر پاس ریشه جوش باید تمیزکاری شود.

اتصالات ورق برشی جان تیر

اتصال ورق برشی به بال ستون بایستی از طریق جوش انجام گیرد. اتصال هر ورق برش به بال ستون باید شامل جوش‌های شیاری با نفوذ کامل CJP، جوش‌های دو طرفه نفوذی نسبی PJP یا جوش‌های گوشه دو طرفه باشد.

پیچ‌های اتصالات

آرایش پیچ‌ها به طور متقارن و حول محورهای تیر قرار گیرد و تعداد آنها در صفحات بال اتصالات به دو پیچ درهر ردیف محدود شود. طول مجموعه پیچ‌ها نباید بیش از عمق تیر باشد و از سوراخ‌های استاندارد در بال تیر وورق بال‌ها استفاده شود. سوراخ پیچ‌ها در بال تیرها و در ورق‌های بال باید از طریق دستگاه سوراخکاری و دستگاه مته کاری ایجاد شوند. استفاده از سوراخ‌های منگنه‌ای (پانچ) مجاز نیست.

محدودیت‌ها و الزامات اتصال تیر با مقطع کاهش یافته RBS

تیرها و ستون‌ها بایستی از نیمرخ نورد شده یا مقاطع ساخته شده از ورق طبق ضوابط ارائه شده برای مشخصات مصالح باشند.

اتصال تیر به ستون از طریق اتصال تیر به بال ستون انجام گیرد.

حداکثر ارتفاع تیرها و ستون‌ها برای مقاطع نورد شده ۱۰۰ سانتیمتر و برای مقاطع ساخته شده از ورق به ارتفاع مقطع معادل نورد شده محدود شده است. ابعاد عرض و ضخامت بال ستون‌ها با مقطع صلیبی نباید بیشتر از مقادیر مجاز آن در مقاطع نورد شده معادل باشند. مقاطع ستون‌های جعبه‌ای بال پهن در صورت مشارکت در عملکرد لرزه‌ای قاب‌های خمشی در دو راستای متعامد نباید عرض یا عمق بیشتر از ۷۰ سانتیمتری را داشته باشند‌.

حداکثر ارتفاع مقطع نورد شده ستون‌ها هنگامی که از دال سازه‌ای بتنی استفاده می‌شود به مقدار ۱۰۰ سانتیمتر محدود شده است. در صورت عدم استفاده از دال سازه‌ای بتنی حداکثر ارتفاع به مقدار ۴۰ سانتیمتر محدود شود.

برای تیرها حداکثر وزن واحد طول به مقدار ۴۵۰ کیلوگرم بر متر محدود شده است ولی هیچگونه محدودیتی برای وزن واحد طول ستون‌ها وجود ندارد.

حداکثر ضخامت بال اعضا به مقدار ۵۰ میلیمتر محدود شده است. حداقل نسبت فاصله خال صد هانه به عمق تیر در قاب‌های خمشی ویژه برابر ۷ و در قاب‌های خمشی متوسط به مقدار ۵ محدود شده است.

نسبت عرض به ضخامت در با‌ل‌ها و جان تیرها و ستون‌ها بایستی مطابق الزامات ضوابط لرزه‌ای مبحث دهم مقررات ملی ساختمان باشد. برای اینکه بارهای ثقلی موقعیت مفصل پلاستیک را به فاصله قابل ملاحظه‌ای از مرکز مقطع کاهش یافته تیر انتقال ندهند، اندازه عرض بال در محاسبات مربوط به نسبت عرض به ضخامت بال باید بیشتر از عرض بال در فاصله دو سوم از مرکز مقطع کاهش یافته باشد.

مهاربندی جانبی تیرها ضوابط لرزه‌ای مبحث دهم مقررات ملی ساختمان تامین شود.

مهاربندی جانبی الحاقی باید طبق ضوابط لرزه‌ای مجاور مقطع کاهش یافته و در مجاورت مفاصل پلاستیک انجام گیرد.

در صورت استفاده از مهاربندی جانبی الحاقی، اجزای تشکیل دهنده آن در تیر نباید در فاصله‌ای بیشتر از d/2 (نصف عمق تیر) از انتهای دورترین موقعیت مقطع کاهش یافته تیر نسبت به بر ستون قرار داشته باشند. هیچ کدام از اجزای مهاربندی جانبی نباید بر روی تیر در ناحیه بین بر ستون تا انتهای دورترین موقعیت مقطع کاهش یافته نسبت به بر ستون قرار داشته باشند. استفاده از مهارجانبی الحاقی باعث افزایش مقاومت مورد انتظار تیر میشود.

صورت استفاده از مهاربند جانبی الحاقی، عضو مهاری نباید به مقطع کاهش یافته (‌ناحیه حفاظت شده) متصل باشد. اعضای مهاربندی جانبی الحاقی در ناحیه‌ای از اتصال که در آن انتظار وقوع تغییر شکل‌های جانبی و دورانی بر اساس ضوابط طراحی اتصال RBS پیش بینی شده است ممکن است شروع گسیختگی‌های زیادی را در این ناحیه تحمل نماید. به این ترتیب در صورت تامین مهاربندی جانبی الحاقی، بایستی جزئیات اجرایی آن در ناحیه بین بر ستون تا دورترین موقعیت مقطع کاهش یافته RBS از بر ستون قرار گیرد.

برای سیستم‌های قاب خمشی که در آنها دال بتنی سازه‌ای در بین ناحیه بحرانی (حفاظت شده) با برشگیرهای جوشی با فواصل مرکز به مرکز حداکثر ۳۰۰ میلیمتر استفاده از مهاربندی جانبی بالا و پایین در مقطع کاهش یافته نیاز نیستند.

ناحیه بحرانی (حفاظت شده) باید شامل قسمتی از تیر بین بر ستون و انتهای دورترین موقعیت مقطع کاهشیافته تیر نسبت به بر ستون باشد.

اتصال گیردار مستقیم تقویت نشده جوشی WUF-W

در این نوع اتصال امکان دوران و چرخش غیرالاستیک از طریق تسلیم تیر در ناحیه مجاور برِ ستون وجود دارد.به منظور کنترل گسیختگی اتصال، تمهیداتی در جوش‌های اتصال بالهای تیر به ستون و نیز جوش‌های اتصالجان تیر به بال ستون و نیز شکل سوراخ‌های دسترسی جوش ایجاد شده است. با رعایت ضوابط این مجموعه اتصالات خمشی WUF-W شرایط لازم را برای کاربرد در قاب‌های خمشی ویژه SMF و متوسط IMF را خواهند داشت.

ضوابط و محدودیت‌های اتصال

  • تیرها و ستون‌ها از نیمرخ نورد شده یا مقاطع ساخته شده از ورق طبق ضوابط ارائه شده برای مشخصات مصالح باشند.
  • حداکثر ارتفاع تیرها برای مقاطع نورد شده ۱۰۰ سانتیمتر و برای مقاطع ساخته شده از ورق به ارتفاع مقطع نورد شده  معادل محدود شده است.
  • برای تیرها حداکثر وزن واحد طول تیرها به مقدار ۲۵۰ کیلوگرم بر متر محدود شده است ولی هیچگونه محدودیتی برای وزن واحد طول ستون‌ها وجود ندارد.
  • حداکثر ضخامت بال تیر به مقدار ۳۰ میلیمتر محدود شده است و برای ضخامت بال مقاطع ستون‌ها فقطرعایت الزامات موجود در مبحث دهم مقررات ملی ساختمان کافی است.
  • حداقل نسبت فاصله خال صد هانه به عمق تیر در قاب‌های خمشی ویژه برابر ۷ و در قاب‌های خمشی متوسط به نسبت ۵ محدود شده است.
  • نسبت عرض به ضخامت در بال‌ها و جان تیرها و ستون‌ها بایستی مطابق الزامات ضوابط لرزه‌ای مبحث دهم مقررات ملی ساختمان باشد.
  • مهار جانبی تیرها و ستون‌ها مطابق الزامات مبحث دهم مقررات ملی ساختمان و این دستورالعمل تامین شود.

اتصال گیردار جوشی تیر از طریق ورق‌های روسری و زیرسری WFP

کاربرد اتصالات گیردار جوشی به کمک ورق‌های روسری و زیرسری فقط به قاب‌های خمشی وسط محدود می‌شود.

ضوابط و محدودیت‌های اتصال  WFP

  • ضخامت بال تیر به مقدار ۳۰ میلیمتر محدود شده است.
  • نسبت دهانه آزاد تیر به عمق مقطع آن نباید از ۵ کمتر در نظر گرفته شود.
  • در دو انتهای تیر، ناحیه حفاظت شده باید برابر فاصله از بر ستون تا انتهای ورق‌های روسری و زیرسری (هر کدام که بزرگتر است) بعلاوه نصف عمق تیر بعد از آن، در نظر گرفته شود. محل تشکیل مفصل پلاستیک Sh در  روی تیر باید در محل انتهای ورق‌های روسری و زیرسری (هر کدام که بزرگتر است) در نظر گرفته شود.
  • مهار جانبی تیرها بایستی مطابق الزامات مبحث دهم مقررات ملی ساختمان تامین شود. تعبیه مهارجانبی در فاصله بین انتهای ناحیه محافظت شده تا نصف عمق تیر بعد از آن الزامی است. در قاب‌های خمشی با دال بتنی سازه‌ای آنها در صورتی که تیرها در فاصله بین دو ناحیه محافظت شده دارای برشگیرهای مدفون در بتن به فاصله حداکثر ۳۰۰ میلیمتر باشند، تعبیه مهار جانبی در محل‌های مذکور الزامی نیست.
  • عمق مقطع ستون‌های H شکل و صلیبی در قاب‌های خمشی با دال بتنی سازه‌ای و دارای برشگیرهای فولادی مدفون در بتن، نباید از ۹۰۰ میلیمتر و در غیاب دال بتنی سازه‌ای از ۴۰۰ میلیمتر تجاوز نماید. عمق و پهنای ستون‌های قوطی شکل ساخته شده از ورق نباید از ۷۰۰ میلیمتر تجاوز نماید.

منبع : عمران سافت

این کلمات به صورت پیش‌فرض زیر مطلب نمایش داده خواهند شد.

  • نکات مهم مهندسی عمرانx
  • نکات مهم در مهندسی عمرانx
  • نکات اجرایی ساختمانx
  • نکات مهم ساختمانیx
  • نکات مهم نظارتx
  • نکات مهندسی عمرانx
  • نکات مهم اجرایی عمرانx
  • نکاتی که باید در اجرای یک ساختمان در نظر داشته باشیم به شرح زیر استx
  • نکات ایمنی ساختمانx
  • شهاب فلاح
  • ۰
  • ۰


سازه‌های مدفون

با توجه به سوابق لرزه خیزی کشور و همچنین نحوه احداث بناها، کشور در سال‌های گذشته و همچنین داشتن پتانسیل بالا در اکثر شهرهای پر جمعیت کشور برای وقوع زلزله، لازم است مسئله مصون سازی جامعه از آثار زلزله به طور جدی مورد توجه قرار گیرد. نابودی سرمایه‌های ملی و انسانی بر اثر زلزله‌های مخرب، لزوم توجه به مقاوم سازی ابنیه و ساختمان‌های موجود را اجتناب ناپذیر می‌کند. در چند دهه اخیر تحقیقات زیادی در زمینه مهندسی زلزله صورت گرفته است.

‌تأمین ایمنی لرزه‌ای ساختمان‌های موجود باید درالویت برنامه‌های کلان کشور قرار گیرد. از جمله روش‌هایی که در کشورهای مختلف جهت مقابله با تهدیدات ناشی از موج و قدرت تخریبی زلزله‌ها و انفجارات صورت گرفته، به کارگیری سازه‌های بتنی، سازه‌های مرکب، دیوار‌حائل، حفاظ‌های بتنی، سازه‌های مجازی و موارد مشابه است.

سازه‌هایی که با آئین نامه‌های متداول طراحی شده‌اند از لحاظ تأمین امنیت و سلامت جانی عملکرد خوبی دارند اما میزان خسارت وارد بر این سازه‌ها (بخصوص سازه‌هایی مثل بیمارستان و مراکز درمانی که کارآئی آنها با اهمیت است) بالا بوده و از لحاظ اقتصادی تعمیر و مرمت آنها توجیه ندارد. آئین نامه‌های طراحی کنونی سازه‌ها در برابر زلزله عمدتاً با هدف کاهش تلفات جانی ناشی از زلزله تدوین شده‌اند و تجارب حاصل از زلزله‌های اخیر نیز نشان دهنده کارآمدی آنها در زمینه کاهش تلفات ناشی از زلزله است. ولی زلزله‌های بزرگ سال‌های اخیر نشانگر آن است که میزان خسارت‌های سازه‌ای و غیرسازه‌ای در برخی موارد بسیار شدید بوده و خسارات مالی سنگینی را به دنبال داشته است.

‌با توجه به تعداد و گستردگی سازه‌های آسیب پذیر در برابر زلزله در سطح کشور بودجه و زمان بسیار زیادی لازم است تا تمامی این سازه‌ها نوسازی و جایگزین شوند. لذا مقاوم سازی سازه‌های موجود با تدابیری که حداقل هزینه و حجم مصالح و زمان را نیاز داشته باشد، تنها و بهترین راه حل جهت جلوگیری از فجایع و مصیبت‌های آتی است.

سازه‌های مدفون مانند نیروگاه سدها که در تونل قرار دارند، به واسطه آن که یکی از عناصر مهم در شریان‌های حیاتی هستند، باید به گونه‌ای طراحی شوند که در مدت زلزله و بعد از آن هم بتوانند عملکرد خود را داشته باشد. بنابراین دستیابی به روش یا روش‌هایی جهت بهسازی لرزه‌ای سازه‌های مدفون که در برابر زلزله به اندازه کافی مقاوم نیستند، می‌تواند بسیار مهم باشد.

مقاوم سازی سازه‌های مدفون

اصطلاحات و مفاهیم مختلف

اصطلاحات و مفاهیم مختلف در ارتباط با ارتقاء سطح لرزه‌ای و مقاوم سازی ساختمان‌ها به کار برده می‌شوند اما تعاریف واحد و کاملاً مشخصی برای آنها ارائه نشده‌اند.‌

مقاوم سازی

تجدید یا جایگزین کردن عنصری نو در قسمتی از ساختمان موجود جهت بالا بردن ظرفیت سازه‌ای نسبت به ساختمان اصلی به طوری که عملیات انجام شده باعث می‌شود مقاومت و شکلپذیری ساختمان تقویت شده، نسبت به ساختمان اولیه بالا رود.

ترمیم‌

تجدید و یا جایگزین کردن قسمتی نو در ساختمان خسارت دیده و یا رو به زوال رفته، جهت بدست آوردن سطح مقاومت و یا شکل پذیری برای ساختمان قبل از خسارت دیدگی.

دوباره مدل کردن‌

تجدید و یا جایگزین کردن قسمتی نو درساختمان موجود که صاحب ملک بخواهد کاربری آن را عوض کند.

بهسازی

شامل مقاوم سازی، ترمیم و دوباره مدل کردن می‌شود.

توان بخشی

تجدید و یا جایگزین کردن قسمتی نو در ساختمان خسارت دیده جهت دستیابی به همان سطح بهره برداری که ساختمان قبل از خسارت دارا بوده است.

بازسازی

بازسازی ساختمان‌ها در یک منطقه مشخص اکثرا جهت بناهای تاریخی بکار می‌رود که شامل ترمیم و مقاوم سازی می‌شود. به منظور بهبود رفتار لرزه‌ای ساختمان‌ها در برابر نیروهای زلزله لازم است ظرفیت لرزه‌ای ساختمان موجود و ظرفیت لرزه‌ای مورد نیاز برای تقویت تخمین زده شود و چگونگی رسیدن به ظرفیت مورد نیازمشخص شود.

هدف از مقاوم سازی ابنیه زیر زمینی

یکی از اساسی‌ترین کارکردهای مقاوم سازی در ساختمان‌های ایمن حفاظت از آن ساختمان در برابر بارهای احتمالی است. مواردی چون شدت آسیب پذیری، هزینه مالی و مقدار عملیات مورد نیاز شاخصه‌های اصلی در مقاوم سازی ابنیه بخصوص ابنیه زیر زمینی است، جهت دستیابی به این شاخصه‌ها، می‌توان هر کدام را به شرح زیر بسط داد.

‌آسیب پذیری

آسیب پذیری عبارت است از مقدار آسیب پذیری سازه در برابر زلزله و اهمیت آن سازه. به عنوان مثال هرچه ساختمانی مهمتر یا آسیب پذیرتر باشد، نیاز به ایمن سازی مؤثر تر،بیشتر احساس می‌شود.

‌هزینه مالی

صرف هزینه مالی تا جایی معقول و بهینه است که ارزش هزینه صرف شده برای حراست ساختمان با توجه به تجهیزات موجود در آن و کارکرد آن ساختمان در مواقع مختلف برابر باشد.

‌مقدار عملیات مورد نیاز

در بعضی مواقع هزینه از اهمیت کمتری برخوردار بوده و امکان انجام مقاوم سازی به دلایلی نظیر زمانبری زیاد و عدم وجود امکانات غیر ممکن است. لذا با توجه به قابل اجراشدن مقاوم سازی، طرح تهیه شود.

روش‌های متداول مقاوم سازی سازه‌های مدفون

‌طرح‌های مختلفی برای مقاوم سازی سازه‌های مدفون در مقابله با زلزله وجود دارد. البته هر یک دارای خصوصیات و روش‌های خاص خود هستند. ولی یکی از مشکلات این طرح‌ها، هزینه‌های سنگین آنها است. که اغلب با افزایش عمق همراه است. از آنجایی که امواج زلزله بخش و کاهش انرژی است. لذا افزایش عمق، تا حدودی ایمنی را افزایش می‌دهد. در مقابل استفاده از این راه، باعث کاهش بهره برداری سازه در شرایط بهره برداری و افزایش هزینه ساخت می‌شود. از سوی دیگر لایه‌های مختلف زمین، بخشی از امواج زلزله را که به فرکانس طبیعی لایه نزدیکتر است تقویت می‌کند و عدم توجه به این مطلب در هنگام طراحی، خسارت‌های جبران‌ناپذیری را به همراه دارد. به دلایل اقتصادی عموماً تدابیرفوق الذکر در سازه‌های مدفون، به طور کامل لحاظ نمی‌شود. ‌

‌اثر موج در خاک

خواص امواج زلزله با عبور از محیط‌های مختلف دگرگون میشود. فرکانس‌های بالا به سرعت میرا شده و فرکانس‌های پایین تا مسافت‌های دورتر پایدار می‌مانند. از سوی دیگر لایه‌های مختلف زمین بخش‌هایی از طیف فرکانس را که به فرکانس طبیعی لایه نزدیکتر است تقویت می‌کنند. در صورتی که لایه‌هایی در زمین وجود داشته باشند که فرکانس آنها از طیف اصلی فرکانس لرزه، دورتر باشد موج تقویت نشده و مستهلک می‌شود. لذا جنس خاک پی نقش مهمی بر مستهلک نمودن موج و انرژی و در ضمن پایداری سازه در اثر نیروهای استاتیکی و دینامیکی دارد.

استهلاک موج

افزایش ضریب استهلاک موجب کاهش نیروهای زلزله در زمین می‌شود.

ضریب استهلاک در مصالح خاکی متفاوت است و می‌تواند بین ۱۰ تا ۲۰ متغیر باشد که ناشی از عوامل مختلفی است.

  1. ‌رفتار پسماند
  2. ‌اصطکاک ناشی بین ۲ سطح سازه و خاک
  3. ‌لزجت داخلی ذرات – اصطکاک – تخلخل بین ذرات ومقاومت خارجی آب در ذرات خاک

در خاک‌های دانه‌ای استهلاک ناشی از اصطکاک، از عوامل دیگر مهمتر است. این مطلب هم قابل ذکر است که عبور موج در محیط متخلخل همراه با توزیع انرژی است.

بار گذاری زلزله بر سازه

روش‌های مقاوم سازی در برابر انفجار، نسبت به زلزله، کم خرج‌تر و امکان پذیر‌تر است اغلب از ارتعاشات انفجاری جهت بررسی خواص زمین لرزه‌ای سازه‌های مختلف بهره گیری می‌شود‌. رفتار یک ماده منفجره بر یک سازه، عموماً با کمک ۲ عنصر مهم مطالعه می‌شود.

  1. ‌اندازه قدرت انفجار، که با TNT سنجیده می‌شود.
  2. فاصله منبع انفجار تا هدف

فشار امواج حاصل از انفجار پس از گذشت از بازه زمانی انفجار به صورت تصاعدی کاهش می‌یابد. طبق آزمایشات انجام شده، این فشار مثبت حتی می‌تواند به فشار منفی تبدیل شود که در این صورت تشدید خرابی را به همراه خواهد داشت. زیرا در اثر این فشارهای منفی سازه، در معرض نیروهایی در جهت مخالف قرار می‌گیرد. با رخ دادن انفجار، (با قدرت معین بر حسب ‌TNT)‌، در سطح زمین یا نزدیک به آن، حداکثر فشار حاصله از این انفجار کروی به صورت تابعی از فاصله نسبت به منبع گسترش دهنده نزول می‌کند. وقتی که موج زلزله یا انفجار به سازه می‌رسد، سازه در معرض فشار بازتاب و نتایج بارگذاری، که ممکن است بسیار پیچیده باشد، قرار می‌گیرد. هر چند که این بارگذاری بسیار پیچیده است ولی باز هم موج انفجار بر اساس بارگذاری قابل محاسبه است. موج زلزله که قبل از برخورد به صورت فشاری بوده، پس از برخورد و انعکاس تبدیل به موج کششی می‌شود. بیشترین آسیب به ساختمان در اثر این موج کشش است.

اثر موج زلزله بر بتن

امواج زلزله در قسمت‌های مختلف دیواره سازه منتشر شده و پس از رسیده به سطوح آزاد دیواره‌ها منعکس‌ و پراکنده می‌شوند. این امواج که قبل از برخورد به صورت فشاری بودند، پس از برخورد و انعکاس تبدیل به موج کششی می‌شوند. انعکاس موج تنش در بدنه سازه‌های بتن آرمه باعث به وجود آمدن پدیده‌ای به نام قلوه کنشدگی میشود که به عنوان یکی از عوامل مخرب سازه‌های امن ساخته شده از بتن به شمار می‌رود. برای مقابله با این پدیده چند روش مورد استفاده قرار می‌گیرند.

راهکار پیشنهادی برای سازهای مدفون در برابر زلزله

در هنگام ارائه راهکارهای جدید برای مقاوم سازی زلزله‌ای و یا انفجاری سازه، باید موارد متعددی در نظر گرفت که اهمیت آن سازه در جای نخست قرار دارد. یکی از سازه‌های بسیار مهم در هر کشور مراکز زیر زمینی نظامی و یا غیر نظامی است که اصطلاحاً به آن سازه‌های امن گفته می‌شود. هر چند هزینه مصرفی در جهت مقاوم سازی این سازه‌ ها ممکن است بسیار زیاد باشد، ولی با توجه به کاهش خسارت‌های مالی و جانی که در صورت بروز حادثه رخ می‌دهد، قابل توجیه است.

لذا با توجه به مطالب بالا به کار بردن روش‌های نوین مقاوم سازی جهت ایمنی و کم هزینه شدن مقاوم سازی سازه‌های امن ضرورت دارد. برای مقاوم سازی این گونه سازه‌ها، نیازمند به راهکار‌های بهینه است.

مواد کامپوزیت پلیمری (FRP )

این مواد بطور کلی ترکیبی از دو ماده الیاف و رزین هستند که در آن الیاف عامل ایجاد مقاومت و رزین عامل ایجاد پیوستگی و یکپارچگی الیاف و همچنین عامل توزیع و انتقال یکنواخت بار به الیاف است. وظیفه محافظت از الیاف و اتصال آنها به سطح و انتقال نیرو از سازه به الیاف نیز بر عهده رزین بوده در حالی که وقتی الیاف با رزین مورد استفاده قرار می‌گیرند، مقاومت کششی آن به ۲ الی ۳ برابر مقاومت کششی فولاد کاهش می‌یابد. این مواد تنوع بسیار زیادی دارند ولی در زیر چند مورد از آنها اشاره می‌شود.

  1. مواد کامپوزیت پلیمری با الیاف کربن (CFRP)
  2. مواد کامپوزیت پلیمری با الیاف آرامید (AFRP)
  3. مواد کامپوزیت پلیمری با الیاف شیشه (GFRP) رایج ترین نوع است ولی در برابر مواد قلیایی آسیب پذیر است. (E-Glass)
  4. الیاف شیشه مقاوم در برابر قلیایی ها AR-Glass

دلایل استفاده از این گونه مواد‌

  • ‌قابلیت افزایش مقاومت در جهت دلخواه
  • ‌مقاوم در برابر خوردگی و فرسودگی
  • ‌وزن بسیار کم (برای تقویت دیوار برشی، وزن دیوار اضافه نخواهد شد و در نتیجه نیازی به تقویت پی نیست)
  • ‌مقاوم در برابر بارهای متناوب، دینامیکی و تکراری (استفاده در پل‌ها به دلیل خستگی ناپذیر بودن)
  • ‌افزایش رفتار شکل پذیر سازه
  • ‌سرعت به کارگیری و نصب بالا
  • ‌رفتار تقریباً یکسان از لحاظ انبساط و انقباض با بتن
  • ‌قابلیت حمل آسان
  • ‌صرفه اقتصادی (علیرغم بالاتر بودن قیمت واحد خود مواد کامپوزیت نسبت به مصالح دیگر، به دلایل زیر استفاده از این مواد در مقاوم سازی به صرفه است)
  • ‌وزن کم و عدم نیاز به تقویت پی‌ها
  • ‌ضخامت تمام شده کم و عدم کاهش زیر بنای مفید ساختمان
  • ‌سرعت نصب بالا و عدم نیاز به ماشین آلات سنگین و پر صدا
  • ‌مقاوم در برابر خوردگی و عدم وجود هزینه نگهداری

میراگر اصطکاکی‌

این میراگر بعنوان قسمتی از سیستم مهاربند جانبی، شامل صفحات فولادی است که به یکدیگر بولت شده و عموماً در قسمت وسط مهارربند X شکل قرار می‌گیرد. سیستمی نظیر این میراگرها وجود دارد که می‌توان آن را به وسیله اتصالاتی در محل اتصال تیر – ستون تعبیه نمود. این میراگرها انرژی زلزله را بواسطه لغزش صفحات فولادی بر روی یکدیگر به انرژی گرمایی تبدیل می‌نماید. ‌

در چند مرحله انرژی موج زلزله جذب می‌شود، به صورتی که حداقل انرژی موج به بتن نهایی می‌رسد، سپس توسط نوع جدیدی از بتن و همین طور با طرز قرار گرفتن خاص آرماتورها و استفاده از میراگرها و اثر زلزله را خنثی می‌کند و آسیب‌ها را به حداقل می‌رساند. همانطور که گفته شد می‌توان این روش را به چند مرحله تقسیم کرد.

‌مرحله اول ( جذب انرژی)‌

در این مرحله ابتدا، موج زلزله را به طور نسبی بوسیله لایه‌های مصنوعی خاک مستهلک نموده، به طوری که انرژی ناشی از موج لرزه‌ای صرف جابجایی این لایه‌ها می‌شود. برای این منظور و همینطور افزایش رفتار میرایی در لایه‌های زمین، از مصالح ارتجاعی مقاوم (PVC متراکم) در خاک‌هایی که تخلخل بالا دارند استفاده می‌شود. سپس از میکرو شمع استفاده می‌شود.

در انتهای این مرحله، از نوعی محیط ژله‌ای (یا پلاسما) استفاده می‌کنیم تا بار وارده در سطح وسیع‌تری پخش شده و نتیجتاً بار زلزله و یا انفجار به طور مستقیم نمی‌تواند دیواره بتنی را تخریب نماید. دراین صورت اثرات مخرب ایجاد شده بر روی سازه به حداقل می‌رسد. مقدار بار بحرانی در هنگام وقوع زلزله در زمان بسیار کوتاه اتفاق می‌افتد. لذا می‌توان با کاهش این اثر بخشی در بازه زمانی مورد نظر و گسترش آن در بازه زمانی بزرگتر، قدرت و شدت بار وارده را کاهش داده و به تبع آن مقدار تخریب را کاهش دهیم.

مرحله دوم

در این مرحله ترکیبی از مصالح FRP با بتن جدید (این نوع بتن در مرکز تحقیقات مهندسی جهاد آذربایجان شرقی طراحی شده که اثر ویران بخش زلزله بر بتن که در بخش اثر زلزله بر بتن ذکر شد به حداقل می‌رساند) اثر زلزله را به حداقل ممکن می‌رساند.

مرحله سوم

در این مرحله با استفاده از میراگرهای اصطکاکی و روش آرماتوربندی پیوسته، حداقل فاصله بین آرماتور‌ها اثر زلزله را خنثی می‌کند. برای احتیاط می‌توان از شمع‌ها که به صورت مایل به سنگ بستر سخت وصل هستند استفاده کرد. عملکرد شمع‌های مایل به گونه‌ای ست که باعث افزایش مقاومت دیواره‌های قائم و تحکیم دیواره بتنی میشوند و لذا از ریزش دیواره به داخل و آسیب دیدن تجهیزات جلوگیری می نمایند. از طرفی با توجه به کنترل توده خاک و تثبیت آن، باعث افزایش مقاومت خاک در اطراف سازه میشوند. بدین صورت انرژی دینامیکی را مستهلک می‌کنند. لذا استفاده از این روش در مقاوم سازی سازه‌های مختلف بسیار مناسب است. نکته قابل ذکر این است که به نظر می‌آید این روش خیلی پر هزینه است.

سپر دفاعی تحتانی

سپر دفاعی تحتانی باعث افزایش کارائی گالری در تحمل موج و بار وارده ناشی از انفجار و زلزله می‌شود. ‌بکارگیری سپر تحتانی از سازه در برابر واژگونی و همچنین در برابر افت‌های موضعی ناشی از اعمال بار و در نهایت از آسیب دیدیگی سازه از قسمت پائین جلوگیری به عمل می‌آورد.

‌شمع‌های مایل (ریز شمع)

عملکرد شمع‌های مایل به گونه است که با دو کارکرد باعث مقاوم سازی دیواره‌های قائم و تحکیم دیواره بتنی می‌‌شوند و لذا از ریزش دیواره به داخل و آسیب دیدن تجهیزات جلوگیری می‌نمایند و باعث افزایش مقاومت خاک در اطراف سازه می‌شوند، چون به خوبی باعث تثبیت خاک می‌شود.

با توجه به مطالب گفته شده به کارگیری روش‌های یاد شده ضمن افزایش باربری سازه، از بروز خسارات به تجهیزات داخل آن جلوگیری کرده و امکان استفاده از سازه امن را بعد از زلزله و یا انفجار فراهم می‌سازد.

  1. ‌امواج زلزله هنگام عبور از لایه‌‌های مختلف زمین در حال انعکاس، شکسته و جذب می‌شوند. ‌
  2. ‌سازه‌های مقاوم شده انفجاری عموماً در مقابل زلزله نیز باربری مناسبی دارند.
  3. ‌جهت توزیع و جذب موج در زمین، ژئومبین به صورت لایه‌های بسیار نازک با ضخامت طراحی در لایه‌های خاک استفاده می‌شود.
  4. ‌با توجه به مشابه بودن بارگذاری زلزله و انفجار بهتر است در سازه‌های مختلف این دو مقاوم سازی بصورت همزمان صورت پذیرد.



منبع : عمران سافت

این کلمات به صورت پیش‌فرض زیر مطلب نمایش داده خواهند شد.

  • مقاوم سازی در گیلانx
  • مقاوم سازی در مازندرانx
  • مقاوم سازی با الیاف Frpx
  • مقاوم سازی و کاشت بولت در مازندرانx
  • مقاوم سازی سازه فولادیx
  • مقاوم سازی در لاهیجانx
  • مقاوم سازی سازه بتنی در مازندرانx
  • مقاوم سازی سازه بتنیx
  • مقاوم سازی سازه‌های مدفونx
  • سازه مدفونx
  • مقاوم سازی سازه هاx
  • بهسازی سازه هاx
  • شهاب فلاح